Membrane Transport						
Examples:						
Facilitative Diffusion						
lonophore						
Maltoporins						
GLUT1 transprter						
Aquaporin						
Selective ion channel for potassium (K-channels)						
Active Transport						
Primary (1°)						
Na ⁺ /K ⁺						
ABC						
Secondary (2°)						
Na+/Glc						
Bicarb/Cl [_]						
Lactose/H+						
Group Translocation						
Bacterial phosphotransferase system (PTS)						

	Membrane Transport						
	TABLE 11-7a Transport Systems Description	ribed Else	where in This Text				
	Transport system and location	Figure	Role				
	IP ₃ -gated Ca ²⁺ channel of ER	12-11	Allows signaling via changes in cytosolic [Ca2+]				
	Glucose transporter of animal cell plasma membrane; regulated by insulin	12-20	Increases capacity of muscle and adipose tissue to take up excess glucose from blood				
,[Voltage-gated Na ⁺ channel of neuron	12-29	Creates action potentials in neuronal signal transmission				
	Fatty acid transporter of myocyte plasma membrane	17-3	Imports fatty acids for fuel				
	Acyl-carnitine/carnitine transporter of mitochondrial inner membrane	17-6	Imports fatty acids into matrix for β oxidation				
	Complex I, III, and IV proton transporters of mitochondrial inner membrane	19-16	Act as energy-conserving mechanism in oxidative phosphorylation, converting electron flow into proton gradient				
	FoF1 ATPase/ATP synthase of mitochondrial inner membrane, chloroplast thylakoid, and bacterial plasma membrane	19-25, 20- 20a, 20-24	Interconverts energy of proton gradient and ATP during oxidative phosphorylation and photophosphorylation				
1	Adenine nucleotide antiporter of mitochondrial inner membrane	19-30	Imports substrate ADP for oxidative phosphorylation and exports product ATP				
	Pi-H+ symporter of mitochondrial inner membrane	19-30	Supplies Pi for oxidative phosphorylation				
	Malate-α-ketoglutarate transporter of mitochondrial inner membrane	19-31	Shuttles reducing equivalents (as malate) from matrix to cytosol				
	Glutamate-aspartate transporter of mitochondrial inner membrane	19-31	Completes shuttling begun by malate-a- ketoglutarate shuttle				

TABLE 11-7b Transport Systems Described Elsewhere in This Text					
Transport system and location	Figure	Role			
Uncoupling protein UCP1, a proton pore of mitochondrial inner membrane	19-36, 23- 35	Allows dissipation of proton gradient in mitochondria as means of thermogenesis and/or disposal of excess fuel			
Cytochrome <i>bf</i> complex, a proton transporter of chloroplast thylakoid	20-19	Acts as proton pump, driven by electron flow through the Z scheme; source of proton gradient for photosynthetic ATP synthesis			
Bacterorhodopsin, a light-driven proton pump	20-27	Is light-driven source of proton gradient for ATP synthesi in halophilic bacterium			
Pi-triose phosphate antiporter of chloroplast inner membrane	20-42, 20- 43	Exports photosynthetic product from stroma; imports $\ensuremath{P_i}$ for ATP synthesis			
Citrate transporter of mitochondrial inner membrane	21-10	Provides cytosolic citrate as source of acetyl-CoA for lipid synthesis			
Pyruvate transporter of mitochondrial inner membrane	21-10	Is part of mechanism for shuttling citrate from matrix to cytosol			
LDL receptor in animal cell plasma membrane	21-41	Imports, by receptor-mediated endocytosis, lipid-carrying particles			
Protein translocase of ER	27-40	Transports into ER proteins destined for plasma membrane, secretion, or organelles			
Nuclear pore protein translocase	27-44a	Shuttles proteins between nucleus and cytoplasm			
Bacterial protein transporter	27-46	Exports secreted proteins through plasma membrane			

Membrane Transport

We learned that:

Summary

- •Membrane proteins play an important functional role in the transport of solutes across the membrane
- •Transport is mediated or non-mediated.
- •In mediated transport, there is a facilitative diffusion mechanism or an active transport mechanism
- •Active transport is either primary or secondary
- •Primary active transport of solutes across membranes requires ATP
- •The most important, and one of the best examples of primary active transport, is the Na/K ATPase.
- •Secondary active transport but can be accomplished in many ways, but uses the potential energy established by primary active transport or pre-established concentration gradients

CATABOLISM				
Glucose Importance:				
 Glucose is an excellent fuel. yields good amount of energy upon oxidation -2840 kJ/mol glucose (-678 kcal/mol) can be efficiently stored in the polymeric form Many organisms and tissues can meet their energy needs on glucose only. 				
 Glucose is a versatile biochemical precursor. Many organisms can use glucose to generate: all the amino acids membrane lipids nucleotides in DNA and RNA cofactors needed for the metabolism of EVERYTHING IOW, EVERYTHING!! 				

CATABOLISM

Glucose Utilization:

- Storage
 - can be stored in the polymeric form (starch, glycogen)
 - used for long-term energy needs
- Energy production
 - generates energy via oxidation of glucose
 - short-term energy needs
- Production of NADPH and pentoses
 - generates NADPH for use in relieving oxidative stress and synthesizing fatty acids, amino acids, etc. (anabolism)
 - generates pentose phosphates for use in DNA/RNA biosynthesis
- Structural carbohydrate production
 - used for generation of alternate carbohydrates used in cell walls of bacteria, fungi, and plants

Glycogenolysis must deal with Branch Points in Glycogen

Glycogenolysis must deal with Branch Points in Glycogen

